If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-n-6480=0
We add all the numbers together, and all the variables
n^2-1n-6480=0
a = 1; b = -1; c = -6480;
Δ = b2-4ac
Δ = -12-4·1·(-6480)
Δ = 25921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25921}=161$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-161}{2*1}=\frac{-160}{2} =-80 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+161}{2*1}=\frac{162}{2} =81 $
| 3x(3-x)-14=0 | | 2n-4=0 | | 5y/7-15=5y=30 | | 5x+3=2x=10 | | 4(3x+5)=5x-22 | | 200m+100m+47750=50250-150m | | 200m+100m+47750=50250-150 | | 15x/27=5/9 | | 6x+3=-5x=14 | | x*2=5x= | | (2m^2-5)/(m^2-4)=1 | | x+0.2/100x=0.08418908 | | x+0.2/100*x=0.08418908 | | 8x+26=4x+14 | | x/10+7=-1 | | z/9+7=3 | | 29-5×(x+1)=4 | | 25-50x+35x2-10x3+x4=0 | | 16x^2-50x+9=0 | | 21x^2+4x=7x | | 25+-50x+35x2+-10x3+x4=0 | | Y=-0.055x+1.65 | | 5g-20=-9g+20 | | 18x^2+24x=10 | | 10x-32=5x-27 | | (x/7)^5=32 | | 4(3y+2)=5(6y-1)=2(y-8)6(7y-4)+4y | | -9x+6-x=4 | | 2=x-(x*0.3) | | (-2x^2+7x)/(x-1)=0 | | 6(2=y)=3(3-y) | | 5(3x+2)=2(6x+11) |